Pinwheel tiling fractal graph- a notion to edge cordial and cordial labeling

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On k-cordial labeling

Hovey [Discrete Math. 93 (1991), 183–194] introduced simultaneous generalizations of harmonious and cordial labellings. He defines a graph G of vertex set V (G) and edge set E(G) to be k-cordial if there is a vertex labelling f from V (G) to Zk, the group of integers modulo k, so that when each edge xy is assigned the label (f(x) + f(y)) (mod k), the number of vertices (respectively, edges) lab...

متن کامل

Most Graphs are Edge-Cordial

We extend the de nition of edge-cordial graphs due to Ng and Lee for graphs on 4k, 4k+1, and 4k+3 vertices to include graphs on 4k+2 vertices, and show that, in fact, all graphs without isolated vertices are edge-cordial. Ng and Lee conjectured that all trees on 4k, 4k + 1, or 4k + 3 vertices are edge-cordial. Intuitively speaking, a graph G is said to be edge-cordial if its edges can be labell...

متن کامل

Remainder Cordial Labeling of Graphs

In this paper we introduce remainder cordial labeling of graphs. Let $G$ be a $(p,q)$ graph. Let $f:V(G)rightarrow {1,2,...,p}$ be a $1-1$ map. For each edge $uv$ assign the label $r$ where $r$ is the remainder when $f(u)$ is divided by $f(v)$ or $f(v)$ is divided by $f(u)$ according as $f(u)geq f(v)$ or $f(v)geq f(u)$. The function$f$ is called a remainder cordial labeling of $G$ if $left| e_{...

متن کامل

On totally magic cordial labeling

A graph G is said to have totally magic cordial(TMC) labeling with constant C if there exists a mapping f : V (G) ∪ E(G) → {0, 1} such that f(a) + f(b) + f(ab) ≡ C (mod 2) for all ab ∈ E(G) and |nf (0)− nf (1)| ≤ 1, where nf (i)(i = 0, 1) is the sum of the number of vertices and edges with label i. In this paper, we investigate some new families of graphs that admit totally magic cordial labeli...

متن کامل

Totally magic cordial labeling of some graphs

A graph G is said to have a totally magic cordial labeling with constant C if there exists a mapping f : V (G) ∪ E(G) → {0, 1} such that f(a) + f(b) + f(ab) ≡ C (mod 2) for all ab ∈ E(G) and |nf (0) − nf (1)| ≤ 1, where nf (i) (i = 0, 1) is the sum of the number of vertices and edges with label i. In this paper, we give a necessary condition for an odd graph to be not totally magic cordial and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Applied Mathematical Research

سال: 2016

ISSN: 2227-4324

DOI: 10.14419/ijamr.v5i2.5700